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Abstract. Data analysts commonly utilize statistics to summarize large
datasets. While it is often sufficient to explore only the summary statis-
tics of a dataset (e.g., min/mean/max), Anscombe’s Quartet demon-
strates how such statistics can be misleading. We consider a similar
problem in the context of graph mining. To study the relationships
between different graph properties and statistics, we examine all low-
order (≤10) non-isomorphic graphs and provide a simple visual analyt-
ics system to explore correlations across multiple graph properties. How-
ever, for graphs with more than ten nodes, generating the entire space of
graphs becomes quickly intractable. We use different random graph gen-
eration methods to further look into the distribution of graph statistics
for higher order graphs and investigate the impact of various sampling
methodologies. We also describe a method for generating many graphs
that are identical over a number of graph properties and statistics yet
are clearly different and identifiably distinct.
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1 Introduction

Fig. 1. Anscombe’s quartet: all four
datasets have the same mean and st. devi-
ation in x and y and (x, y)-correlation.

Statistics are often used to summa-
rize a large dataset. In a way, one
hopes to find the “most important”
statistics that capture one’s data. For
example, when comparing two coun-
tries, we often specify the population
size, GDP, employment rate, etc. The
idea is that if two countries have a
“similar” statistical profile, they are
similar (e.g., France and Germany
have a more similar demographic pro-
file than France and USA). However,
Anscombe’s quartet [3] convincingly
illustrates that datasets with the same
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values over a limited number of statistical properties can be fundamentally dif-
ferent – a great argument for the need to visualize the underlying data; see
Fig. 1.

Fig. 2. These four graphs share the same 5 common
statistics: |V | = 12, |E| = 21, number of triangles
| � | = 10, girth = 3 and global clustering coefficient
GCC = 0.5. However, structurally the graphs are
very different: some are planar others are not, some
show regular patterns and are symmetric others are
not, and finally, one of the graphs is disconnected,
another is 1-connected and the rest are 2-connected.

Similarly, in the graph
analytics community, a vari-
ety of statistics are being
used to summarize graphs,
such as graph density, aver-
age path length, global clus-
tering coefficient, etc. How-
ever, summarizing a graph
with a fixed set of graph
statistics leads to the prob-
lem illustrated by Anscombe.
It is easy to construct several
graphs that have the same
basic statistics (e.g., num-
ber of vertices, number of
edges, number of triangles,
girth, clustering coefficient)
while the underlying graphs
are clearly different and iden-
tifiably distinct; see Fig. 2.
From a graph theoretical
point of view, these graphs
are very different: they dif-
fer in connectivity, planarity,
symmetry, and other struc-
tural properties.

Recently, Matejka and
Fitzmaurice [31] proposed a
dataset generation method that can modify a given 2-dimensional point set (like
the ones in Anscombe’s quartet) while preserving its summary statistics but sig-
nificantly changing its visualization (what they call “graph”). Given the graphs
in Fig. 2, we consider whether it is also possible to modify a given graph and
preserve a given set of summary statistics while significantly changing other
graph properties and statistics. Note that the problem is much easier for 2D
point sets and basic statistics, such as mean, deviation and correlation, than for
graphs where many graph properties are structurally correlated (e.g., diameter
and average path length). With this in mind, we first consider how can we fix a
few graph statistics (such as number of nodes, number of edges, number of tri-
angles) and vary another statistic (such as clustering coefficient or connectivity).
We find that there is a spectrum of possibilities. Sometimes the “unrestricted”
statistic can vary dramatically, sometimes not, and the outcome depends on two
issues: (1) the inherent correlation between some statistics (e.g., density and
number of triangles), and (2) the bias in graph generators.
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We begin by studying the correlation between graph summary statistics
across the set of all non-isomorphic graphs with up to 10 vertices. The statistical
properties derived for all graphs for a fixed number of vertices provide further
information about certain “restrictions.” In other words, the range of one statis-
tic may be restricted if another statistical property is fixed. However, we cannot
explore the entire space of graph statistics and correlations. As the number
of vertices grows, the number of different non-isomorphic graphs grows super-
exponentially. For |V | = 1, 2 . . . 9 the numbers are 1, 2, 4, 11, 34, 156, 1044, 12346,
274668, but already for |V | = 16 we have 6 × 1022 non-isomoprhic graphs.

To go beyond ten vertices we use graph generators based on models, such
as Erdös-Rényi and Watts-Strogatz. However, different graph generators have
different biases and these can significantly impact the results. We study the
extent to which sampling using random generators can represent the whole graph
set for an arbitrary number of vertices with respect to their coverage of the graph
statistics. One way to evaluate the performance of random generators is based
on the ground-truth graph sets that are available: all non-isomorphic graphs
for |V | ≤ 10 vertices. If we randomly generate a small set of graphs (also for
|V | ≤ 10 vertices) using a given graph generator, we can explore how well the
sample and generator cover the space of graph statistics. In this way, we can
begin exploring the issues of “same stats, different graphs” for larger graphs.

Data and tools are available at http://vader.lab.asu.edu/sameStatDiff
Graph/. Specifically, we have a basic visual analytics system and basic explo-
ration tools for the space of all low-order (≤10) non-isomorphic graphs and
sampled higher order graphs. We also include a generator for “same stats, dif-
ferent graphs,” i.e., multiple graphs that are identical over a number of graph
statistics, yet are clearly different.

2 Related Work

We briefly review the graph mining literature, paying special attention to com-
monly collected graph statistics. We also consider different graph generators.

Graph Statistics: Graph mining is applied in different domains from bioin-
formatics and chemistry, to software engineering and social science. Essential to
graph mining is the efficient calculation of various graph properties and statis-
tics that can provide useful insight about the structural properties of a graph.
A review of recent graph mining systems identified some of the most frequently
extracted statistics. We list those, along with their definitions, in Table 1. These
properties range from basic, e.g., vertex count and edge count, to complex, e.g.,
clustering coefficients and average path length. Many of them can be used to
derive further properties and statistics. For example, graph density can be deter-
mined directly as the ratio of the number of edges |E| to the maximum number of
edges possible |V |× (|V |−1)/2, and real-world networks are often found to have
a low graph density [33]. Node connectivity and edge connectivity measures may

http://vader.lab.asu.edu/sameStatDiffGraph/
http://vader.lab.asu.edu/sameStatDiffGraph/
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Table 1. The set of graph statistics considered in this paper.

Name Formula Reference

Average clustering
coefficient

ACC(G) = 1
n

∑n
i=1 c(ui), ui ∈ V, n = |V | [10,11,25,27,34]

c(v) =
|{(u,w)|u,w∈Γ (v),(u,w)∈E}|

|Γ (v)|(|Γ (v)|−1)/2
, v, u, w ∈ V

Global clustering
coefficient

GCC(G) =
3×|triangles|

|connected triples| in the graph
[10,25]

Square clustering SCC(G) =

∑kv
u=1

∑kv
w=u+1 qv(u,w)

∑kv
u=1

∑kv
w=u+1[av(u,w)+qv(u,w)]

[28]

Average path length APL = ave{ n−1∑
v∈V d(u,v),u �=v

} [10,11,27,34]

Degree assortativity r =

∑
xy xy(exy−axby)

σaσb
[34,36]

Diameter diam(G) = max{dist(v, w), v, w ∈ V } [11,25,32,34]

Density den =
2|E|

|V |(|V |−1)

Ratio of triangles Rt =
|triangles|

|V |(|V |−1)/2

Node connectivity Cv: the minimum number of nodes to remove to
disconnect the graph

[17]

Edge connectivity Ce: the minimum number of edges to remove to
disconnect the graph

[17]

be used to describe the resilience of a network [9,29], and graph diameter [24]
captures the maximum among all pairs of shortest paths [2,8].

Other graph statistics measure how tightly nodes are grouped in a graph. For
example, clustering coefficients have been used to describe many real-world net-
works, and can be measured locally and globally. Nodes in a highly connected
clique tend to have a high local clustering coefficient, and a graph with clear
clustering patterns will have a high global clustering coefficient [18,19,26,37].
Studies have shown that the global clustering coefficient has been found to be
nearly always larger in real-world graphs than in Erdös-Rényi graphs with the
same number of vertices and edges [10,37,42], and a small-world network should
have a relatively large average clustering coefficient [13,15,44]. The average path
length (APL) is also of interest; small-world networks have APL that is loga-
rithmic in the number of vertices, while real-world networks have small (often
constant) APL [13,15,37,42–44].

Degree distribution is one frequently used property describing the graph
degree statistics. Many real-world networks, including communication, citation,
biological and social networks, have been found to follow a power-law shaped
degree distribution [6,10,37]. Other real world networks have been found to
follow an exponential degree distribution [22,40,45]. Degree assortativity is of
particular interest in the study of social networks and is calculated based on
the Pearson correlation between the vertex degrees of connected pairs [35]. A
random graph generated by Erdös-Rényi model has an expected assortative coef-
ficient of 0. Newman [35] extensively studied assortativity in real-world networks
and found that social networks are often assortative (positive assortativity), i.e.,
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vertices with a similar degree preferentially connect together, whereas techno-
logical and biological networks tend to be disassortative (negative assortativity)
implying that vertices with a smaller degree tend to connect to high degree ver-
tices. Assortativity has been shown to affect clustering [30], resilience [35], and
epidemic-spread [7] in networks.

Graph Generators: Basic graph statistics have been used to describe various
classes of graphs (e.g., geometric, small-world, scale-free) and a variety of algo-
rithms have been developed to automatically generate graphs that mimic these
various properties. Charkabati et al. [11] divide graph models and generators
into four broad categories:

1. Random Graph Models: The graphs are generated by a random process.
2. Preferential Attachment Models: In these models, the “rich get richer,” as

the network grows, leading to power law effects.
3. Optimization-Based Models: Here, power laws are shown to evolve when risks

are minimized using limited resources.
4. Geographical Models: These models consider the effects of geography (i.e.,

the positions of the nodes) on the topology of the network. This is relevant
for modeling router or power grid networks.

The Erdös-Rényi (ER) network model is a simple graph generation model [10]
that creates graphs either by choosing a network randomly with equal probability
from a set of all possible networks of size |V | with |E| edges [20] or by creating
each possible edge of a network with |V | vertices with a given probability p [16].
The latter process gives a binomial degree distribution that can be approximated
with a Poisson distribution. Note that fixing the number of nodes and using
p = 1/2 results in a good sampling of the space of isomorphic graphs. However,
this model (and others discussed below) does not sample well the space of non-
isomorphic graphs, which are the subject of our study.

Watts and Strogatz [44] addressed the low clustering coefficient limitation of
the ER model in their model (WS) which can be used to generate small-world
graphs. The WS model can generate disconnected graphs, but the variation
suggested by Newman and Watts [38] ensures connectivity. Models have also
been proposed for generating synthetic scale-free networks with a varying scal-
ing exponent(γ). The first scale-free directed network model was given by de
Solla Price [39]. Barabási and Albert (BA) [5] described another popular net-
work model for generating undirected networks. It is a network growth model in
which each added vertex has a fixed number of edges |E|, and the probability of
each edge connecting to an existing vertex v is proportional to the degree of v.
Dorogovtsev et al. [14] and Albert and Barabási [1] also developed a variation
of the BA model with a tunable scaling exponent.

Bach et al. [4] introduce an interactive system to create random graphs that
match user-specified statistics based on a genetic algorithm. The statistics con-
sidered are |V |, |E|, average vertex degree, number of components, diameter,
ACC, density, and the number of clusters (as defined by Newman and Gir-
van [21]). The goal is to generate graphs that get as close as possible to a set of
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target statistics; however, there are no guarantees that the target values can be
obtained. Somewhat differently, we are interested in creating graphs that match
several target statistics exactly, but differ drastically in other parameters.

3 Preliminary Experiments and Findings

In a recent study of the ability to perceive different graph properties such as edge
density and clustering coefficient in different types of graph layouts (e.g., force-
directed, circular), we generated a large number of graphs with 100 vertices.
Specifically, we generated graphs that vary in a controlled way in edge density
and graphs that vary in a controlled way in the average clustering coefficient [41].
A post-hoc analysis of this data (http://vader.lab.asu.edu/GraphAnalytics/),
reveals some interesting patterns among the statistics described in Table 1.

Fig. 3. Graph property correlation matrix plots for the edge density dataset (left) and
the ground truth set of all non-isomorphic graphs on |V | = 9 vertices (right). (Color
figure online)

The edge density dataset has 4,950 graphs and We compute all ten statis-
tics from Table 1 and compute Pearson correlation coefficients; see Fig. 3. We
observed high positive (blue) correlations and negative (yellow) correlations for
many property pairs. For example, the average clustering coefficient is highly
correlated with the global clustering coefficient, the number of triangles, and
graph connectivity.

Note, however, these graphs were created for a very specific purpose and cover
only limited space of all graphs with |V | = 100. The type of generators we used,
and the way we used them (some statistical properties were controlled), could
bias the results and influence the correlations. The fact that these correlations
exist when some properties are fixed indicates that we can keep certain graph
statistics fixed while manipulating others. This motivated us to conduct the
following experiments:

1. Generate all non-isomorphic lower order graphs (|V | ≤ 10) and analyze the
relationships between statistical properties. We consider this type of data as
ground truth due to its completeness.

http://vader.lab.asu.edu/GraphAnalytics/
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2. Use different graph generators and compare how well they represent the space
of non-isomorphic graphs and how well they cover the range of possible values
in the ground truth data.

An analysis of the set of 274,668 non-isomorphic graphs on |V | = 9 vertices
shows that the correlations are quite different than those in graphs from our
edge density experiment; see Fig. 3.

Fig. 4. Correlations between graph statistics in the ground truth for |V | = 5, 6, 7, 8, 9.
Note that for |V | = 9 there are already 274,668 points. Points are plotted to overlap,
with the largest sets plotted first (i.e., |V | = 9, . . . |V | = 5) to enable us to identify the
range of statistics that can be covered with a given number of vertices.

4 Analysis of Graph Statistics for Low-Order Graphs

We start the experiment by looking at pairwise relationship of graph statistics
of low-order graphs, where all non-isomorphic graphs can be enumerated. If
two statistics, say s1 and s2, are highly correlated, then fixing s1 is likely to
restrict the range of possible values for s2. On the other hand, if s1 and s2 are
independent, fixing s1 might not impact the range of values for s2, yielding same
stats (s1) different graphs (s2). With this in mind, we first study the correlations
between the statistics under consideration.

We compute all statistics for all non-isomorphic graphs on |V | = 4, 5, . . . , 10
vertices (we exclude graphs with fewer vertices as many of the statistics are
not well defined and there are only a handful of graphs). We then consider
the pairwise correlations between the different statistics and how this changes
as the graph order increases; see Fig. 4. To compare the coverage of statistics
with different |V |, we scale the statistic values into the same range. By defini-
tion, clustering coefficients (ACC, GCC, SCC) are in the [0, 1] range and degree
assortativity is in the [−1, 1] range. We keep their values and ranges without
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scaling. Edge density, number of triangles, diameter and connectivity measures
(Cv and Ce), are normalized into [0, 1] (dividing by the corresponding maximum
value). The last statistic, APL, is also normalized into [0, 1], subject to some
complications: we compute the exact average path length to divide by in our
ground truth datasets, but not when we use the generators, where we use the
maximal path length encountered instead (which may not be the same as the
maximum).

Fig. 5. The convex hull of graph coverage
across several statistical properties. Each row
(starting from the top) represents all graphs
for a fixed number of vertices (|V | = 5 . . . |V | =
10). Columns are pairs of graph properties.

It is easy to see that the cover-
age of values expands with increas-
ing |V |. Figure 5 shows this pat-
tern for three pairs of properties.
This indicates that we are more
likely to find larger ranges of differ-
ent statistics for graphs with more
vertices given the same set of fixed
statistics. With this in mind, we
consider graphs with more than
10 vertices, but this time rely-
ing on random graph generators.
Figure 6 shows how correlation val-
ues between all pairs of statis-
tics change when the number of
vertices increases. The blue trend
lines for the ground truth data
show the correlation values cal-
culated using the set of all pos-
sible graphs for a given number
of nodes. The orange trend lines
show the correlation values calcu-
lated from graphs generated with
the ER model. Specifically, the ER data is created as follows: for each value
of |V | = 5, 6, . . . , 15 we generate 100, 000 graphs with p selected uniformly at
random in the [0, 1] range.

For most of the cells in the matrix shown in Fig. 6, the correlation values seem
to converge as |V | becomes larger than 8. (both in the ground truth and the ER-
model generated graph sets). Moreover, for most of the cells, the pattern of the
change in correlation values appears to be the same for both sets. Analyzing the
trend lines of the ER-model, we observe four patterns of change in the correlation
values: convergence to a constant value, monotonic decrease, monotonic increase,
and non-monotonic change. These patterns are highlighted in Fig. 6 by enclosing
boxes of different colors. There are exceptions that do not fit these patterns,
e.g., (Sc, r) and in two cases, (r, Cv) and (r, Ce), the trend lines show different
patterns.
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Fig. 6. Trends in the correlations with increasing |V |: the x-axis shows the number of
vertices and the y-axis shows the correlation value for the pair of graph statistics.

5 Graph Statistics and Graph Generators

While we can explore statistical coverage and correlations in low-order graphs,
it is difficult to generate all non-isomorphic graphs with more than 10 vertices
due to the super-exponential increase in the number of different graphs (e.g., for
|V | = 16 we there are 6 × 1022 different graphs). However, these higher order
graphs are common in many domains. As such, we want to further explore this
issue of “same stats, different graphs” for larger graphs. As such, we turn to
graph generators to help us explore the same-stats-different-graphs problem.

We select four different random generators that cover the four categories [11]
of graph generation: the ER random graph model, the WS small-world model,
the BA preferential attachment model, and the geometric random graph model.

Coverage for Ground-Truth Graph Set: We use implementations of all four
generators (ER, WS, BA, geometric) from NetworkX [23], with three variants
of ER (p = 0.5, p selected uniformly at random from the [0, 1] range, and p
selected to match edge density in the ground truth). More details about the
graph generators and how well they perform for our tasks are provided in the
full version of the paper [12]. For each generator, we generate 1%, 0.1% and
0.01% of the total number of graphs in ground-truth graph set. We use low
sampling rates as for high order graphs the ground truth set is huge and any
sampling strategy will have just a fraction of the total. Our goal here is to explore
whether a small sample of graphs could be representative of the ground truth
set of non-isomorphic graphs and cover the space well.

We evaluate the different graph generators in two different ways. First we
want to see whether a graph generator is representative of the ground truth
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data, i.e., whether the generator yields a sample that with similar properties as
those in the ground truth. Second, we want to see whether a graph generator is
covering the complete range of values found in the ground truth data.

We measure how representative a graph generator is by comparing pairwise
correlations in the sample and in the ground truth. We measure how well a graph
generator covers the range of values in the ground truth data by comparing the
volumes of the generated data and the ground truth data. Specifically, for each
generator we compare the volumes of the 10-dimensional bounding boxes for the
ground truth set and the generated set. We consider a generator to be covering
the ground truth set well if this ratio is close to 100%; see Fig. 7.

Fig. 7. Coverage ratios, showing the average of 10 runs of the generators. (Color figure
online)

Both of these measures can be visualized by plotting each of the graphs in
ground-truth graph set as dots in the 2D matrix of correlations and then drawing
the generated graph set on top of the first plot to see how well the generator set
covers the ground-truth graph set. We color the ground-truth graph set in blue
and the generated data in red. Because the ground-truth graph set includes all
possible graphs for a fixed |V |, there is at least one blue point under each red
point. Detailed illustrations can be found in the full version of the paper [12]
but here we include one example of the most representative model: ER with
p = 0.5; see Fig. 8. From this figure it is easy to see that nearly all pairwise
correlations are very similar in the ground truth and in the generated data.
Note, however, that from the same figure we can also see that this generator
does not cover the range of possible values in the ground truth data well (e.g.,
in the columns corresponding to APL, r, diameter and density, the leftmost and
rightmost points in the plots are blue).

6 Finding Different Graphs with the Same Statistics

While our exploration of graph statistics, correlation, and generation revealed
some challenges, it is still possible to explore the fundamental question of whether
we can identify graphs that are similar across some statistics while being dras-
tically different across others. To find graphs that are identical over a number
of graph statistics and yet are different, we use the ground truth data for small
non-isomorphic graphs. For larger graphs, we use the graph generators together
with some filters.
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Fig. 8. Ground truth (blue) and ER with p = 0.5 (red). (Color figure online)

Finding Graphs in the Ground Truth: For |V | ≤ 10, we directly use all
possible non-isomorphic graphs as our dataset. In fact, we can fix different com-
binations of 5 statistics and still get multiple distinct graphs. We visualize this
with figures that encapsulate the variability of one statistic in 10 slots, covering
the ranges [0.0, 0.1], [0.1, 0.2], . . . [0.9, 1] and in each slot we show a graph (if it
exists) drawn by a spring layout; see Fig. 9.

For the first experiment, we fix |V | = 9, APL ∈ (1.42, 1.47), den ∈
(0.52, 0.57), GCC ∈ (0.5,0.6), Rt ∈ (0.15, 0.25). Since all our statistics are nor-
malized to [0, 1] and assortativity is in [−1, 1], each of the ten slots has a range
of 0.2. We find graphs for seven of the ten possible slots; see Fig. 9. This figure
also illustrates the output of our “same stats, different graphs” generator: fix
several statistics and generate graphs that vary in another statistic.

Fig. 9. Variability in assortativity.

Similarly, for the second experiment, we fix |V | = 9, APL ∈ (1.47, 1.69),
diam = 3, Cv = 2, Ce = 2, and r ∈ (−0.22,−0.29) to obtain GCC in the range
(0, 0.8); see Fig. 10.

Fig. 10. Variability in GCC.
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As a final example, we fix |V | = 9, SCC ∈ (0.75, 0.85), ACC ∈ (0.75, 0.8),
r ∈ (−0.3,−0.2), Rt ∈ (0.35, 0.45) and find graphs with Ce from 0 to 5; see
Fig. 11.

Fig. 11. Variability in edge connectivity.

Note that the graphs in Figs. 9, 10 and 11. are different in structure even
though they possess similar values for many properties.

Finding Graphs Using Graph Generators: This approach relies on gener-
ating many graphs and filtering graphs based on several fixed statistics. For the
two most important statistics of a graph, |V | and |E|, we generate all graphs
with a fixed |V | and choose |E| as follows:

1. uniform: select |E| uniformly from its range. This is equivalent to forcing the
edge density in the generated set to follow a uniform distribution;

2. population: select |E| by forcing the edge density in the generated set to
match the distribution in the ground truth (population) graph set.

Using both edge selection strategies for all four generators, we compare the
statistics distribution to the ground truth for |V | = 9. Figure 12 illustrates how
different statistics are distributed given uniform edge sampling and population-
based edge sampling for the ER model. It shows that although the population-
based sampling approach generates a distribution that is more similar to the

Fig. 12. Distribution of the ten statistics, including min/mean/max and standard devi-
ation. Ground truth is in blue, population ER in green, uniform ER in red. (Color figure
online)
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ground truth, it has a narrower coverage (larger min and smaller max) than the
uniform sampling. The WS and BA models also do not provide good coverage
of the various statistics.

7 Discussion and Future Work

Random graph generators have been designed to model different types of graphs,
but by design such algorithms sample the space of isomorphic graphs. For the
purpose of studying graph properties and structure, we need generators that
represent and cover the space of non-isomorphic graphs.

We considered how to explore the space of graphs and graph statistics that
make it possible to have multiple graphs that are identical in a number of graph
statistics, yet are clearly different. To “see” the difference, it often suffices to look
at the drawings of the graphs. However, as graphs get larger, some graph draw-
ing algorithms may not allow us to distinguish differences in statistics between
two graphs purely from their drawings. We recently studied how the perception
statistics, such as density and ACC, is affected by different graph drawing algo-
rithms [41]. The results confirm the intuition that some drawing algorithms are
more appropriate than others in aiding viewers to perceive differences between
underlying graph statistics. Further work in this direction might help ensure that
differences between graphs are captured in the different drawings.
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